您的当前位置:网站首页>>维修品牌>>正文

变频器维修知识概述

维修需要具备的基本知识

一、先来了解模电和数电的区别
  模电和数电的区别,
  很多刚进入电子行业,自动化行业的人士对模似电子电路和数字电子电路存在一些疑惑,由其是刚进这行的人更是不明了,当然在接触与维护时肯定要熟悉。
  所谓模似电子电路实际是相对数字电子电路而言。
  模电:一般指频率在百兆HZ以下,电压在数十伏以内的模似信号以及对此信号的分析/处理及相关器件的运用。百兆HZ以上的信号属于高频电子电路范畴。百伏以上的信号属于强电或高压电范畴。
  数电:一般指通过数字逻辑和计算去分析、处理信号,数字逻辑电路的构成以及运用。
  数电的输入和输出端一般由模电组成,构成数电的基本逻辑元素就是模电中三级管饱和特性和截止特性。
  由于数电可大规模集成,可进行复杂的数学运算,对温度、干扰、老化等参数不敏感,因此是今后的发展方向。但现实世界中信息都是模似信息(光线、无线电、热、冷等),模电是不可能淘汰的,但就一个系统而言模电部分可能会减少。理想构成为:模似输入——AD采样(数字化)——数字处理——DA转换——模似输出。
  二、运放与比较器区别
  运算放大器与专用比较器在主控板的控电路中比较常见,它的作用也不用去形容了。
  1    运放可以连接成为比较输出,比较器就是比较。那么市面上为何单独出售两种产品,他们有相同和不同之处是什么呢? 
2    比较器输出一般是OC便于电平转换;比较器没有频补,SLEW RATE比同级运放大,但接成放大器易自激。 比较器的开环增益比一般放大器高很多,因此比较器正负端小的差异就引起输出端变化。 
3    频响是一方面,另外运放当比较器时输出不稳定,不一定能满足后级逻辑电路的要求。 
4    比较器为集电极开路输出,容易输出TTL电平,而运放有饱和压降,使用不便。
  关于运算放大器与专用比较器的区别可分为以下几点:
  1    比较器的翻转速度快,大约在NS数量级,而运放翻转速度一般为US数量级(特殊高速运放除外) 
2    运放可以输入负反馈电路,而比较器不能使用负反馈,虽然比较器也有同相和反相两个输入端,便因为其内部没有相位补偿电路,如果输入负反馈,电路不能稳定工作,内部无相位补偿电路,这也是比较器比运放速度快的原因。 
3    运放输入初级一般采用推挽电路,双极性输出,而多数比较器输出极为集电级开路结构,所以需要上拉电阻,单极性输出,容易和数字电路连接。
  三、肖特基二极管和快恢复二极管又什么区别 
   快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 
  肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。
  这两种管子通常用于开关电源。
  肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~
  前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~
  快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件.
  肖特基二极管:
  反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。它是具有肖特基特性的金属半导体结的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。
  快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件.
  四、电解电容在电路中的作用
  1,滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰.
  2,耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。9 
   1、什么是压敏电阻
  压敏电阻是中国大陆的名词,意思是"在一定电流电压范围内电阻值随电压而变",或者是说"电阻值对电压敏感"的阻器。相应的英文名称叫“Voltage Dependent Resistor”简写为“VDR”
  压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体。 
  在中国台湾,压敏电阻器是按其用途来命名的,称为"突波吸收器"。压敏电阻器按其用途有时也称为电冲击(浪涌)抑制器(吸收器)
  2、压敏电阻电路的安全阀作用
  压敏电阻有什么用?压敏电阻的最大特点是当加在它上面的电压低于它的阀值"UN"时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。
  3、应用类型
  不同的使用场合,应用压敏电阻的目的,作用在压敏电阻上的电压/电流应力并不相同,
  因而对压敏电阻的要求也不相同,注意区分这种差异,对于正确使用是十分重要的。
  4、电路功能用压敏电阻
  压敏电阻主要应用于瞬态过电压保护,但是它的类似于半导体稳压管的伏安特性,还使它具有多种电路元件功能,例如可用作:
  (1)直流高压小电流稳压元件,其稳定电压可高达数千伏以上,这是硅稳压管无法达到的。 
2)电压波动检测元件。  
3)直流电瓶移位元件。 
4)均压元件。 
5)荧光启动元件
  5、保护用压敏电阻的基本性能
  (1)保护特性,当冲击源的冲击强(或冲击电流Isp=Usp/Zs)不超过规定值时,压敏电阻的限制电压不允许超过被保护对象所能承受的冲击耐电压(Urp)。 
2)耐冲击特性,即压敏电阻本身应能承受规定的冲击电流,冲击能量,以及多次冲击相继出现时的平均功率。 
3)寿命特性有两项,一是连续工作电压寿命,即压敏电阻在规定环境温度和系统电压条件应能可靠地工作规定的时间(小时数)。二是冲击寿命,即能可靠

在实际维修中UVW输出不平衡可分为三种情况:

(1) 安川显示器显示:(MISSMG MOTO PHASE)输出缺相,如排除检测电路故障,则通过直接检查IGBT模块和驱动电路,结论为IGBT模块损坏,同时驱动电路也有问题。通过更换IGBT模块和驱动电路上元器件如光耦, PNP,NPN一对驱动晶体管电解电容稳压管等基本能解决问题。

(2) 安川输出UVW之间相差100V左右,(输出380V为例)驱动电路中S1~S6中间的某一路驱动电路无驱动电压和驱动信号波形通过测量输出端子UVW—P之间。

(3) UVW—N之间直流电压,可找到这一路驱动电压不正常或没有驱动信号波形,它导致UVW中的某一相不能正常工作所引起相位差。

解决办法为检查驱动电路电压是否正常,光耦是否坏了,电解电容是否漏液等。通过示波器测量6路波形符合技术要求,问题也就可解决了。

还有另一种现象是安川UVW三相输出交流电压之间相差大于3%,虽然能使用,但是不能长期使用和大负载使用。这主要是驱动电路S1~S6之间主要器件不对称所至,如晶体管的技术参数,稳压管的参数,电容的液枯,漏液和漏电等,6路驱动电路上器件的耗损使其参数上有一定的差别,导致安川输出UV、 W之间产生微小的电位差。上述情况虽然能使用,但是技术上是不能容许的。我公司追求精益求精对各种器件通过筛选老化,如晶体管技术参数和稳压管技术参数一致、配对等,保证驱动电路中驱动信号符合技术要求,确保IGBT模块饱和,导通时间上一致是由器件上的质量保证,修理好的安川在做负载试验时,电动机运转中电动机声音轻盈,在修理前和修理后带相同功率电动机和相同功率负载,后者的电动机三相电流相对要小得多。